
UNIT 3: ERROR AND THEIR TYPES

Error: An error is the change or the mismatching take place between the
data unit sent by transmitter and the data unit received by the receiver e.g.
10101010 sent by sender 10101011 received by receiver. Here is an error of
1 bit.

Types of error
Single bit error

Burst error

A single bit error is an error condition that alters(modifies) one bit but
does not affect nearby bits.

A burst error is a contiguous sequence of bits in which the first and last bits
and any number of intermediate bits are received in error.

Error detection
Regardless of the design of the transmission system, there will be errors,
resulting in the change of one or more bits in a transmitted frame.

When a code word is transmitted one or more number of transmitted bits
will be reversed due to transmission impairments. Thus error will be
introduced.

It is possible to detect these errors if the received code word is not one of
the valid code words. To detect the errors at the receiver, the valid code
words should be separated by a distance of more than 1.

Error Correction

It is a mechanism for the receiver to locate and correct the error without
resorting to retransmission. Send additional information so incorrect data
can be corrected and accepted. Error correction is the additional ability to
reconstruct the original, error free data.

Error Control

Error control refers to mechanisms to detect and correct errors that occur in
the transmission of frames. The most common techniques for error control
are based on some or all of the following:

1. Error detection

2. Positive acknowledgement

3. Retransmission after time-out

4. Negative acknowledgement and retransmission.

These mechanisms are also referred as automatic repeat request (ARQ).

Three types of redundancy checks used in data communication

 Error detection uses the concept of redundancy, which means adding extra
bits for detecting errors at the destination. There are three types of
redundancy checks are common in data communication:

(a) Parity check

(h) Cyclic Redundancy check (CRC)

(c) Checksum.

Parity bit

 In this technique, a redundant bit called a parity bit, is added to every
data unit so that the total number of 1’s in the unit becomes even (or odd).

In the example, we can understand that

Suppose we want to transmit 1100001.

Adding the number of 1’s gives us 3, an odd number.

Before transmitting, we pass the data unit through a parity generator. The
parity generator counts the 1’s and appends the parity bit to the end (al in
this case).

 Difference between even parity and odd parity

In case of redundancy check method we have to append the data unit with
some extra bits. These extra bits are called parity.

This parity or parity hit can be even or odd.

In case of even parity we have to make number of 1’s even, including the
parity hit.

 e.g. 1110001 is the data unit where the no. of l’s is already even then we
will insert 0 at the next to data unit it’, 1110001.

In case of odd parity we have to make no. of l’s odd, including the parity bit.
e.g. 1111000 is the data unit, where the no. of 1’s is even then we will
insert 1 at the next to data unit i.e. 11110001.

CRC (Cyclic Redundancy Check) method of Error Detection

Cyclic Redundancy Check (CRC): Cyclic Redundancy check method is
most powerful mechanism of error detecting. Unlike the parity check which
is based on addition, CRC is based on binary division.

In CRC, instead of adding bits to achieve a desired parity, a sequence of
redundant bits, called the CRC or the CRC remainder, is appended to the end
of a data unit so that the resulting data unit becomes exactly divisible by a
second predetermined binary number.

At its destination the incoming data unit is divided by the same number. If at
this step there is no remainder, the data unit is assumed to be intact and is
therefore accepted.

A remainder indicates that the data unit has been damaged in transit and
therefore must be rejected.

The redundancy bits used by CRC are derived by dividing the data unit by a
predetermined divisor, the remainder is the CRC.

A CRC must have two qualities:

1. It must have exactly one less bit than the divisor.

2. Appending it to the end of the data string must make the resulting bit
sequence exactly divisible by the divisor.

CRC generator and checker

First, a string of n 0’s is appended to the data unit. The number n is less
than the number of bits in the predetermined divisor, which are n + 1 bits.

Second, the newly formed data unit is divided by the divisor, using a
process called binary division the remainder resulting from this division is
the CRC.

Third, the CRC of n bits derived in step 2 replaces the appended Os at the
end of the data unit. The data unit arrives at the receiver data first followed
by the CRC. The receiver treats the whole string as a unit and divides it by
the same divisor that was used to find the CRC remainder.

If the string arrives without error, the CRC checker yields a remainder of
zero and the data unit passes. If the string has been changed in transit the
division yields a non-zero remainder and the data unit does not pass.

Start with the message to be encoded:

11010011101100

This is first padded with zeroes corresponding to the bit length n of the CRC.
Here is the first calculation for computing a 3-bit CRC:

11010011101100 000 <--- input left shifted by 3 bits
1011 <--- divisor (4 bits)

01100011101100 000 <--- result

If the input bit above the leftmost divisor bit is 0, do nothing and move the
divisor to the right by one bit. If the input bit above the leftmost divisor bit
is 1, the divisor is XORed into the input. The divisor is then shifted one bit to
the right, and the process is repeated until the divisor reaches the right-
hand end of the input row. Here is the entire calculation:

11010011101100 000 <--- input left shifted by 3 bits
1011 <--- divisor
01100011101100 000 <--- result
 1011 <--- divisor
00111011101100 000
 1011

00010111101100 000
 1011
00000001101100 000
 1011
00000000110100 000
 1011
00000000011000 000
 1011
00000000001110 000
 1011
00000000000101 000
 101 1

00000000000000 100 <---remainder (3 bits)

Since the leftmost divisor bit zeroed every input bit it touched, when this
process ends the only bits in the input row that can be nonzero are the n
bits at the right-hand end of the row. These n bits are the remainder of the
division step, and will also be the value of the CRC function.

The validity of a received message can easily be verified by performing the
above calculation again, this time with the check value added instead of
zeroes. The remainder should equal zero if there are no detectable errors.

11010011101100 100 <--- input with check value
1011 <--- divisor
01100011101100 100 <--- result
 1011 <--- divisor ...
00111011101100 100

and so on until:

00000000001110 100
 1011
0000000000 101 100
 101 1

 0 <--- remainder

